438 research outputs found

    Ship Course Keeping Using Different Sliding Mode Controllers

    Get PDF
    This study addresses three sliding mode heading controllers for dealing with uncertain wave disturbances. A nonlinear steering model is derived, and the feedback linearization method is chosen to simplify the nonlinear system in this study. The adaptive method and disturbance observer technique are proposed for course keeping and ensuring robust performance of the time varying wave moment and actuator dynamics. Finally, the simulation results on a navy ship illustrate the effectiveness of the presented control algorithms for course keeping

    NONLINEAR ADAPTIVE HEADING CONTROL FOR AN UNDERACTUATED SURFACE VESSEL WITH CONSTRAINED INPUT AND SIDESLIP ANGLE COMPENSATION

    Get PDF
    In this paper, a nonlinear adaptive heading controller is developed for an underactuated surface vessel with constrained input and sideslip angle compensation. The controller design is accomplished in a framework of backstepping technique. First, to amend the irrationality of the traditional definition of the desired heading, the desired heading is compensated by the sideslip angle. Considering the actuator physical constrain, a hyperbolic tangent function and a Nussbaum function are introduced to handle the nonlinear part of control input. The error and the disturbance are estimated and compensated by an adaptive control law. In addition, to avoid the complicated calculation of time derivatives of the virtual control, the command filter is introduced to integrate with the control law. It is analysed by the Lyapunov theory that the closed loop system is guaranteed to be uniformly ultimately bounded stability. Finally, the simulation studies illustrate the effectiveness of the proposed control method

    Roll reduction and course keeping for the ship moving in waves with factorized NGMV control

    Get PDF
    A factorized Nonlinear Generalized Minimum Variance (NGMV) control law is developed for a combined roll and yaw motion compensation using rudders and fins. The nonlinear model used for control design includes the non-minimum phase interaction from rudder to roll motion, and the dynamics from fins to yaw motion. This controller is developed using the polynomial approach to ensure that the non-minimum phase system remains stable in closed-loop. The effectiveness of the approach is demonstrated on a simulated nonlinear ship model

    s-LWSR: Super Lightweight Super-Resolution Network

    Full text link
    Deep learning (DL) architectures for superresolution (SR) normally contain tremendous parameters, which has been regarded as the crucial advantage for obtaining satisfying performance. However, with the widespread use of mobile phones for taking and retouching photos, this character greatly hampers the deployment of DL-SR models on the mobile devices. To address this problem, in this paper, we propose a super lightweight SR network: s-LWSR. There are mainly three contributions in our work. Firstly, in order to efficiently abstract features from the low resolution image, we build an information pool to mix multi-level information from the first half part of the pipeline. Accordingly, the information pool feeds the second half part with the combination of hierarchical features from the previous layers. Secondly, we employ a compression module to further decrease the size of parameters. Intensive analysis confirms its capacity of trade-off between model complexity and accuracy. Thirdly, by revealing the specific role of activation in deep models, we remove several activation layers in our SR model to retain more information for performance improvement. Extensive experiments show that our s-LWSR, with limited parameters and operations, can achieve similar performance to other cumbersome DL-SR methods

    Progress in Cryopreservation of Stem Cells and Immune Cells for Cytotherapy

    Get PDF
    Cellular therapy with stem and immune cells has demonstrated significant success both in clinical treatments and the industrial market. Cryopreservation is a necessary and essential component of cellular therapy. In this chapter, first of all, some basic theories of cryoinjury and techniques in cryopreservation are reviewed. Then it focuses on the progress of cryopreservation of stem cells and immune cells, including new protocols and techniques, alternative cryoprotective agents (CPA), side effects after transplantation, and advances in reducing adverse reactions. Strategies to minimize adverse effects include medication before and after transplantation, optimizing the infusion procedure, reducing the CPA concentration or using alternative CPAs for cryopreservation, and removing CPA prior to infusion. Traditional and newly developed approaches including methods and devices for CPA removal are discussed. Future work is recommended including further optimization of cryopreservation protocols especially for lymphocytes; standardization of the optimized protocols with temperature monitoring and quality control; exploration of DMSO-free, serum-free, and even xeno-free media for cryopreservation; development of simple, reliable, and cost-effective devices for cryopreservation; and more fundamental cryobiological studies to avoid cellular injury.Keywords: cryopreservation, stem cell, immune cell, cytotherap

    PAV markers in <i>Sorghum bicolour</i>:genome pattern, affected genes and pathways, and genetic linkage map construction

    Get PDF
    KEY MESSAGE: 5,511 genic small-size PAVs in sorghum were identified and examined, including the pattern and the function enrichment of PAV genes. 325 PAV markers were developed to construct a genetic map. ABSTRACT: Presence/absence variants (PAVs) correlate closely to the phenotypic variation, by impacting plant genome sizes and the adaption to the environment. To shed more light on their genome-wide patterns, functions and the possibility of using them as molecular markers, we generated next generation genome sequencing data for four sorghum inbred lines and used associated bioinformatic pipelines to identify small-size PAVs (40–10 kb). Five thousand five hundreds and eleven genic PAVs (40–10 kb) were identified and found to affect 3,238 genes. These PAVs were mainly distributed on the sub-telomeric regions, but the highest proportions occurred in the vicinity of the centromeric regions. One of the prominent features of the PAVs is the high occurrence of long terminal repeats retrotransposons and DNA transposons. PAVs caused various alterations to gene structure, primarily including the coding sequence variants, intron variants, transcript ablation, and initiator codon changes. The genes affected by PAVs were significantly enriched in those involved in stress responses and protein modification. We used 325 PAVs polymorphic between two sorghum inbred lines Ji2731 and E-Tian, together with 49 SSR markers, and constructed a genetic map, which consisted of 10 linkage groups corresponding to the 10 chromosomes of sorghum and spanned 1,430.3 cM in length covering 97 % of the physical genome. The resources reported here should be useful for genetic study and breeding of sorghum and related species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00122-015-2458-4) contains supplementary material, which is available to authorized users

    Micro-Porosity and gas emission characteristics of thermally contacted metamorphic coal by igneous intrusion

    Get PDF
    In order to quantitatively characterize the pore structure of thermally contacted metamorphic coal by igneous intrusion and investigate the intrinsic connection between the pore and dispersion properties of coal, the samples of metamorphic coal from different locations of Daxing Coal Mine were collected and processed. The correlative analysis on pore characteristics, including pore area, perimeter, shape factor and fractal dimension of pores with different sizes, were carried out by using scanning electron microscopy (SEM) and pore-fracture analysis system (PCAS). The results show that the porosity of macro- and meso-pores and the number of pores in the metamorphic coal are larger than those of the normal coal. The total length of pores per unit area and the average shape factor increase, and the connectivity of pore is raised, resulting in an enhanced gas release capacity (increased V1) within the first one second. The proportion of gas emission in the first one second of metamorphic coal is much higher than that of other coals. The decrease of pore volume and specific surface area of micropores makes the adsorption capacity weaker, which results in a decrease in the total amount of emission - smaller Δp value, and earlier inflection point and faster attenuation on the emission curve, namely an increased α value. In addition, the V1, α value and volatile content satisfy the quadratic nonlinear and linear relationships, respectively. In the prediction of outburst risk of thermally contacted metamorphic coal, it is more reasonable to use the V1 index to characterize the gas release rate
    corecore